
58 The Delphi Magazine Issue 45

COM Corner: Microsoft
Transaction Server, Part 1
by Steve Teixeira

The COM development commu-
nity has been making a lot of

noise of late about Microsoft
Transaction Server (MTS), and not
without reason. MTS represents a
new concept for COM developers,
who have long enjoyed the advan-
tages of language-independent
interfaces, location transparency,
and automatic activation and deac-
tivation. However, thanks to MTS,
COM developers can now take
advantage of powerful runtime
services, like lifetime management,
security, resource pooling, and
transaction management. While
MTS brings a lot of useful features
to the table, it also requires some
changes in system design that in
some cases contradict the ideas
COM has pounded into our skulls
over the years.

In this article, I will discuss MTS
technology, and in part 2 of this
article next month, we will talk
more specifically about MTS and
Delphi 4, Delphi’s MTS framework
and IDE support, and walk through
some sample MTS components
and applications.

Before we leap into the technical
details, I want to tell you up front
that transaction handling is only a
small part of the MTS picture, and
the fact that ‘transaction’ appears
in the name is quite unfortunate.
It’s like calling your new home
entertainment system a soap
opera viewer. Sure, it does that,
but so much more. To their credit,
when I’ve spoken with folks at
Microsoft close to the technology,
they generally hate the name. For-
tunately, the name won’t be with us
much longer, as MTS will be folded
into the operating system as a part
of the upcoming enhancements to
COM known as COM+.

Why MTS?
The magic word of system design
these days is scalability. With the

hyper-growth of internet and
intranets, the consolidation of cor-
porate data into centrally-located
data stores, and the need for every-
one and their cousin to get at the
data, it’s absolutely crucial that a
system be able to scale to ever
larger numbers of concurrent
users. It’s definitely a challenge,
especially considering the rather
unforgiving limitations we must
deal with, such as finite database
connections, network bandwidth,
server load, and so on. In the good
old days of the early 90s, client/
server computing was all the rage
and considered The Way to write
scalable applications. However, as
databases were bogged down with
triggers and stored procedures
and clients were complicated with
various bits of code here and there
in an effort to implement business
rules, it shortly became obvious
that such systems would never
scale to large numbers of users.
The multi-tier architecture soon
became popular as a way to scale a
system to a greater number of
users. By placing application logic
and shared database connections
in the middle tier, database and
client logic could be simplified and
resource usage optimized for an
overall higher-bandwidth system.

A sidenote to this, that I’ll men-
tion just because it is interesting, is
that the added infrastructure intro-
duced in a multi-tier environment
tends to increase latency as it
increases bandwidth. In other
words, you may very well need to
sacrifice the performance of the
system in order to improve
scalability.

Microsoft extended to COM
developers the ability to build
applications that are distributed
across multiple machines with the
introduction of DCOM several
years ago. DCOM was a step in the
right direction. It provided the

means by which things COM may
communicate with one another
over the wire, but it did not make
many significant steps toward
solving the real-world problems
encountered by developers of dis-
tributed applications. Issues such
as lifetime optimization, thread
management, flexible security,
and transaction support were still
left to individual developers. Enter
MTS.

What Is MTS?
MTS is a COM-based programming
model and collection of runtime
services for developing scalable
and/or transactional COM-based
applications. The programming
model part of MTS isn’t much dif-
ferent than what you are familiar
with already as a COM developer.
There are a few wrinkles that you
will learn about shortly, but for the
most part, any in-process (DLL)
COM object with a type library can
be an MTS object. However, it’s not
recommended that you run
non-MTS-aware COM components
within MTS. MTS runtime services
mean that MTS serves as the care-
giver for your COM components.
MTS can host them, manage their
lifetime, provide security for them,
and so on. This means that, rather
than running within the context of
your application, MTS COM
objects run within the context of
the MTS runtime. All this adds up
to a bunch of new features that you
can take advantage of with little or
no coding changes in your client or
COM object code.

It’s interesting to note that
because MTS objects do not run
directly within the context of a
client like other COM objects, cli-
ents never really obtain interface
pointers directly to an object
instance. Instead, MTS inserts a
proxy between the client and the
MTS object such that the proxy is

May 1999 The Delphi Magazine 59

identical to the object from the cli-
ent’s point of view. However,
because MTS has complete control
over the proxy, it can control
access to interface methods of the
object for purposes such as life-
time management and security, as
you will soon learn.

Stateful Versus Stateless
The number one topic of conversa-
tion amongst folks looking at, play-
ing with, and working on MTS
technology seems to be the discus-
sion of stateful versus stateless
objects. While COM itself doesn’t
give a whit as to the state of an
object, in practice most traditional
COM objects are stateful. That is,
they continuously maintain state
information from the time that
they’re created, while they’re
being used, and up until the time
that they’re destroyed. The prob-
lem with stateful objects is that
they aren’t particularly scalable,
since state information would have
to be maintained for every object
being accessed by every client. A
stateless object is one that gener-
ally does not maintain state infor-
mation between method calls. MTS
prefers stateless objects because
they enable MTS to play some opti-
mization tricks. If an object doesn’t
maintain any state between
method calls, then MTS could
theoretically make the object go
away between calls without caus-
ing any harm. Furthermore, since
the client maintains pointers only
to MTS’s internal proxy for the
object, MTS could do so without

the client being any the wiser. It’s
more than a theory, this is actually
how MTS works. MTS will destroy
the instances of the object
between calls in order to free up
resources associated with the
object. When the client makes
another call to that object, the MTS
proxy will intercept it and a new
instance of the object will be cre-
ated automatically. This helps the
system scale to a larger number of
users, since there will be compara-
tively few active instances of a
class at any given time.

Writing interfaces to behave in a
stateless manner will probably
require a slight departure from
your usual way of thinking for
interface design. For example,
consider the classic COM-style
interface in Listing 1.

As you might imagine, you would
use the Listing 1 interface in a
manner something like Listing 2.
The problem with this style is that
the object is not stateless between
method calls, because state infor-
mation regarding the account
number must be maintained
across the call. A better approach
to this interface for use in MTS
would be to pass all of the neces-
sary information to the AddActivity
method so that the object could
behave in a stateless manner:

procedure AddActivity(

AccountNum: WideString;

Amount: Integer); safecall;

The particular state of an active
object is also referred to as a con-
text. MTS maintains a context for
each active object that tracks
things such as security and

transaction information for the
object. An object can at any time
call GetObjectContext to obtain an
IObjectContext interface pointer
for the object’s context. IObject
Context is defined in the Mtx unit as
shown in Listing 3.

The two most important meth-
ods in this interface are Set
Complete and SetAbort. If either of
these methods are called, then the
object is telling MTS that it no
longer has any state to maintain.
MTS will therefore destroy the
object (unknown to the client, of
course), thereby freeing up
resources for other instances. If
the object is participating in a
transaction, SetComplete and Set
Abort also have effect of a commit
or rollback for the transaction,
respectively.

Lifetime Management
From the time we were itty bitty
COM programmers, we were
taught to only hold on to interface
pointers for as long as necessary,
and to release them as soon as
they are unneeded. In traditional
COM this makes a lot of sense
because we don’t want to occupy
the system with maintaining
resources that aren’t being used.
However, since MTS will automati-
cally free up stateless objects after
they call SetComplete or SetAbort,
there is no expense associated
with holding a reference to such an
object indefinitely. Furthermore,
since the client never knows that
the object instance may have been
deleted under the sheets, clients
do not have to be rewritten to take
advantage of this feature.

Packages
As if the word ‘package’ weren’t
already overloaded enough, with
Delphi packages, C++Builder pack-
ages, and Oracle packages all
coming to mind as examples of the
overuse of this word. MTS also has
a notion of packages that no doubt

ICheckbook = interface['{2CCF0409-EE29-11D2-AF31-0000861EF0BB}']
procedure SetAccount(AccountNum: WideString); safecall;
procedure AddActivity(Amount: Integer); safecall;

end;

➤ Listing 1

var
CB: ICheckbook;

begin
CB := SomehowGetInstance;
// open my checking account
CB.SetAccount(‘12345ABCDE’);
// add a debit for $100
CB.AddActivity(-100);
...

end;

IObjectContext = interface(IUnknown)
['{51372AE0-CAE7-11CF-BE81-00AA00A2FA25}']
function CreateInstance(const cid, rid: TGUID; out pv): HResult; stdcall;
procedure SetComplete; safecall;
procedure SetAbort; safecall;
procedure EnableCommit; safecall;
procedure DisableCommit; safecall;
function IsInTransaction: Bool; stdcall;
function IsSecurityEnabled: Bool; stdcall;
function IsCallerInRole(const bstrRole: WideString): Bool; safecall;

end;

➤ Listing 3

➤ Listing 2

60 The Delphi Magazine Issue 45

differs from those other varieties.
An MTS package is more logical
than physical, as it represents a
programmer-defined collection of
MTS objects with like activation,
security, and transaction attrib-
utes. The physical part of a pack-
age is a file that contains
references to the COM server DLLs
and MTS objects within those serv-
ers that make up the package. The
package file also contains informa-
tion on the attributes of the MTS
objects within.

MTS will run all components
within a package in the same pro-
cess. This enables you to configure
your well behaved and error-free
packages insulated from the poten-
tial problems that could be caused
by faults or errors in other pack-
ages. It is also interesting to note
that the physical location of com-
ponents has no bearing on eligibil-
ity for package inclusion; a single
COM server can contain several
COM objects, each in a separate
package.

Packages are created and manip-
ulated using either the Run |
Install MTS Objects... menu item
in Delphi or the Transaction Server
Explorer that is installed with MTS
and shown in Figure 1.

Security
MTS provides a roll-based security
system that is much more flexible
than the standard Windows NT
security normally used with
DCOM. A roll is a category of user,
for example in a banking system
typical rolls might be teller, super-
visor, and manager. MTS allows
you to specify the degree to which
any particular roll can manipulate
an object on a per-interface basis.
For example, you can specify that
the manager roll has access to the
ICreateHomeLoan interface, but the
teller roll does not. If you need to
get more granular than access to
entire interfaces, you can deter-
mine the roll of the user in the cur-
rent context by calling the
IsCallerInRole method of
IObjectContext. Using this, for
example, you could enforce a busi-
ness rule that stipulates that tell-
ers can approve normal account
closures, but only supervisors can

approve an account closure when
the account balance is over
$100,000. Security rolls can be con-
figured in the Transaction Server
Explorer.

Oh, And It Also
Does Transactions
And of course, as the name implies,
MTS also does transactions. You
might be thinking to yourself, ‘big
deal, my database server already
supports transactions. Why do I
need my components to support
them as well?’ A fair question, and
luckily I’m equipped with good
answers. Transaction support in
MTS can enable you to perform
transactions across multiple data-
bases or can even make a single
atomic action out of some set of
operations having nothing to do
with databases. In order to support
transactions on your MTS objects,
you must either set the correct
transaction flag on your object’s
coclass in the type library during
development (this is what the
Delphi MTS wizard does) or after
deployment in the Transaction
Server Explorer.

When should you use transac-
tions in your objects? That’s easy:
you should use transactions when-
ever you have a process involving
multiple steps that you wish to
make into a single, atomic transac-
tion. In doing so, the entire process
can be either committed or rolled
back, but you will never leave your
logic or data in an incorrect or
indeterminate state somewhere in
between. For example, if I am writ-
ing software for a bank and I wish

to handle the case where a client
bounces a check, there would
likely be several steps involved in
handling that, including: debiting
the account for the amount of the
check, debiting the account for the
bounced check service charge and
sending a letter to the client.

In order to properly process the
bounced check, each of these
things must happen. Therefore,
wrapping them in a single transac-
tion would ensure that all will
occur, if no errors are encoun-
tered, or all will roll back to their
original pre-transaction state if an
error occurs.

Resources
With objects being created and
destroyed all the time and transac-
tions happening everywhere, it’s
important for MTS to provide a
means for sharing certain finite or
expensive resources (such as
database connections) across
multiple objects. MTS does this
using resource managers and
resource dispensers.

A resource manager is a service
that manages some type of durable
data, such as account balance or
inventory. Microsoft provides a
resource manager in MS SQL
Server. A resource dispenser
manages non-durable resources,
such as database connections.
Microsoft provides a resource
dispenser for ODBC database con-
nections, and Borland provides
a resource dispenser for BDE
database connections.

➤ Figure 1

May 1999 The Delphi Magazine 61

When a transaction makes use of some type of
resource, it enlists the resource to become a part of the
transaction so that all changes made to the resource
during the transaction will participate in the commit or
rollback of the transaction.

Summary
MTS is a powerful addition to the COM family of tech-
nologies. By adding services such as lifetime manage-
ment, transaction support, security, and transactions
to COM objects without requiring significant changes
to existing source code, Microsoft has leveraged COM
into a more scalable technology, suitable for
large-scale distributed development. This article took
you through a tour of the basics of MTS, and next
month we will go deeper into the specifics of MTS
development with Delphi. Until then, it’s time to go
back and inspect those old COM objects on your hard
disk and work on making them function in a stateless
environment!

Steve Teixeira is the Vice President of Software
Development at DeVries Data Systems, a Silicon
Valley consulting and training firm. Send your ques-
tions, comments, and thoughts to steve@dvdata.com.
Steve wishes to thank Lino ‘MTS’ Tadros for his
assistance with this article.

	Why MTS?
	What Is MTS?
	Stateful Versus Stateless
	Lifetime Management
	Packages
	Security
	Oh, And It Also Does Transactions
	Resources
	Summary

